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The four-electron problem in LiH has been treated by use of Slater type orbitals for the
1s electrons on the Li atom and split molecular orbitals for the two valence electrons. Some
properties of the two dimensional spin space present in the case of four different space-functions
are discussed. Total electronic energies and electric dipole moments have been calculated.

LiH wird mit Slaterfunktionen fiir die 1s-Elektronen von Li und SMO’s fiir die beiden
Valenzelektronen behandelt. Einige Eigenschaften des zweidimensionalen Spinraums werden
diskutiert. Elektronenenergien und Dipolmomente werden berechnet.

Nous avons traité le probléme & quatre électrons de LiH en utilisant des orbitales de Slater
pour les électrons 1s de Li et des orbitales moléculaires distinctes pour les deux électrons de
valence. Certaines propriétés de 'espace de spin & 2 dimensions existant dans le cas de quatre
fonctions d’espace différentes sont discutées. On a calculé les énergies électroniques totales et
les moments dipolaires,

I. Introduction

The conventional Hartree-Fock method for treating molecular systems gives
rise to an error in the calculated total energy [7]. This error, usually called correla-
tion energy, is of the same order of magnitude as the binding energy in diatomic
molecules [2]. It is thus of essential importance to improve this method. One kind
of improvement is to remove the restriction of doubly occupied orbitals which is
characteristic to the conventional approach. In order to retain the right spin-
symmetry of the total wavefunction a spin-projection has to be performed after
this splitting of the space orbitals. This extension of the original scheme is of
importance mainly when the number of basis functions is small and a fairly limited
configuration interaction treatment is made.

In the present work [5] four different orbitals for the electrons in the LiH
molecule are used. The two dimensional spinspace in this case has been inves-
tigated to get the spin-eigenfunction corresponding to the lowest total energy.
Further the polarization of the outer electron on the lithium atom has been in-
vestigated.

IL. Details of the Calculations
1. Theoretical background

Splitting of the doubly filled orbitals in the conventional Hartree-Fock method
gives rise to a spin problem, because the corresponding Slater determinant is no
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longer an eigenfunction of the spinoperator S2. A proper spineigenfunction can be
obtained by use of a spinprojection operator {6, 7].

The ground state of the LiH molecule is known to be a singlet state [3]. For
this molecule we get two linearly independent projected Slater determinants if
the four basic space orbitals all are different [6]. The spin-eigenfunction («, fs —
By g} (005 Bs — Py o¢y) used in the valence-bond method, is then a linear combina-
tion of these two spinprojected functions. We expect this valence-bond function
to be rather near that function in the spin space which gives the lowest total
energy, because a linear combination of the two basic spinfunctions adds the
terms oy oty Oz B4 and By B &5 o, to a total wavefunction of valence-bond type.
These terms correspond to spin « or § for both 1s electrons on Li, and spin § or «
for the two valence electrons. Such terms have a high energy and thus give a
small contribution to the total wavefunection [5].

2. Wavefunctions used

The basic orbitals used are:
o = (18" = Ny e38r1
b — (13”)Li — le” e~2.0651’
¢ = (28)1i = Ngg re 0657 1)
¢" = (2p0)11 = Naps 7 cos § 0657
d ={Usyg = Nyge”
where the IV,’s are normalization constants. These orbitalfunctions were used by
RosinsoN et al. in an earlier calculation on LiH [10]. They are fairly close to the
optimum orbitals of the same form [4, 11].
The split molecular orbitals used for the two valence electrons are:

1 ' "y
$1 = Vﬁlf (C +26)Tk1d
szzkgW(C —{—).C)-{—d (2)

where 1 is a parameter governing the polarization of the 2s-orbital and k, and %,
are splitting parameters. These parameters are varied to give the energy minimum.

This type of split molecular orbitals are of the same type as used by McWEENY,
Onxo and Tsucrmpa on H,0 and NH, [8, 12], and similar to the ones used by
Covwrsox and Fisoner on H, [1].

III1. Resnlts

The total electronic energy and the electric dipole moment were calculated at
the fixed internuclear distance 3.015 a.u. (1.5954 A) [3]. The results are given in
Tab. 1-—5.

The function ¥y is constructed from orbitals a, b and @1, ¢y for the core- and
valence-electrons respectively. Wano denotes the function built up from orbitals
a, b, ¢y, and @,.
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Table 1. Total energies (B in a.u.) and dipole moment
(u tn Debye) for Puo and Psuo
(SMO = split molecular orbital)

A=0 Jmin A=1

Yo E -7.971 ~7.991 —17.989
" -4.98 —-6.45 -6.67

Ysyo F —7.990 --8.006 -8.002
" -3.62 ~6.04 —6.48

Experimental values: £ = —8.0704 a.u. [9];
n = —5.882 Debye [14].

Table 2. Minimum parameter values for Pyo and Psyo

Z. = 0 ﬂminh A = 1
Yso ky 0.40 0.28 0.30
Ty 0 0 0
Yo k» 215 1.75 1.80

a =k =1k,
b ﬂ.min = 0.60 for g]smo; ﬂ.min =0.70 fOI‘ ’:I,Mo.

The two linearly independent spineigenfunctions which we choose to span the
two-dimensional spinspace are

afo
@1:@det{wb(pl§2}
aff «
@, = 0 det {af%%} (3)

where ¢ is the spinprojection operator which annihilates all symmetry components
except the singlet one. It was found that these two functions have their energy
minimum for k; = 1/k, i.e. for the MO-case (¢, = ¢,). For ¢, = @, there is only a
one-dimensional spinspace with @,= 0, = Pyo (except for a constant factor).

In order to determine the spineigenfunction (Gyeg) Which gives the lowest
energy in the two dimensional space we use a wavefunction constructed from
orbitals a, b, (¢’ -- A ¢") and d. The ordinary valence-bond function is:

Pyp = L op {01 by (¢ - 2 6")g dy} (1 fo — By o) (%5 By — P a) (4)
where &/ ,p is the antisymmetrization operator. The two basic spineigenfunctions
0, and O} are as in Eq. (3) with ¢y = (¢’ + 4 ¢") and ¢, = d.

Table 3. Total energies for ¥vs, O1, O} and Onest

Z = 0 Amin Z. = 1
Yye —7.969 -7.995 —17.992
24 —17.8%4 —17.955 —17.954
[CA —17.895 —7.957 —7.956
Ohest
= (¢; OF + ¢} OF) -7.969 —7.996 —7.992
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Table 4. Amin-values for Pvs, OF, O} and Chrest

Yve 61 O Opest

Amin 0.63 0.83 0.82 0.60
Table 5
Dipole moments for Wys, Oy and @}, (in Debye)
IR A=t
Yys —0.88 -5.49 —5.97
Y ~0.86 ~5.86 —5.97
o; | ~083  -58 595

IV. Discussion

The improvement in the total energy when splitting the 1s-shell on Li in the
way done by Rosmisox and others [4, 10, 17] is about 0.026 a.u. The further
lowering of the energy by use of split molecular orbitals amounts to 0.015 a.u.
This result is consistent with the work by McWEENY and others [12, 8]. They
however, get non-zero values for both %, and %, in Eq. (2). This probably depends
on the different effective electronegativity values for the atoms involved.

The best wavefunction we get, Wsmo in Tab. 1, is almost exactly equal to the
one used by RoBmsox et al. [10]. They, however, started from

@y = 01 (28)15 + €5 (2po)ri + €3 (18)m (5)
@s = (18)m .

‘We notice further that the Aminvalues changes with the type of spineigenfunction
used. This is expected as the projection in Eq. (3) changes the charge distribution
of the determinantal wavefunction in different ways depending on the spincombi-
nation used.

The strong dependence of the dipole moment on the polarization of the 2s-
orbital on the Lithium atom is also expected for physical reasons.
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